Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 227-237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401443

RESUMO

Outer membrane vesicle-functionalized nanoparticles (OMV-NPs) have attracted significant interest, especially regarding drug delivery applications and vaccines. Here, we report on novel OMV-NPs by applying bioorthogonal click reaction for encapsulating gold nanoparticles (NPs) within outer membrane vesicles (OMVs) by covalent coupling. For this purpose, outer membrane protein A (OmpA), abundant in large numbers (due to 100,000 copies/cell [1]) in OMVs, was modified via the incorporation of the unnatural amino acid p-azidophenylalanine. The azide group was covalently coupled to alkyne-functionalized NPs after incorporation into OmpA. A simplified procedure using low-speed centrifugation (1,000 x g) was developed for preparing OMV-NPs. The OMV-NPs were characterized by zeta potential, Laurdan-based lipid membrane dynamics studies, and the enzymatic activity of functionalized OMVs with surface-displayed nicotinamide adenine dinucleotide oxidase (Nox). In addition, OMVs from attenuated bacteria (ClearColiTM BL21(DE3), E. coli F470) with surface-displayed Nox or antibody fragments were prepared and successfully coupled to AuNPs. Finally, OMV-NPs displaying single-chain variable fragments from a monoclonal antibody directed against epidermal growth factor receptor were applied to demonstrate the feasibility of OMV-NPs for tumor cell targeting.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
ACS Pharmacol Transl Sci ; 6(12): 1945-1957, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093831

RESUMO

Pancreatic ribonuclease A (RNase A) inhibitors were screened from an autodisplayed Fv-antibody library, which was prepared by randomizing amino acid sequences of the third complementary-determining region (CDR3) within the heavy chain variable region (VH region) of immunoglobulin G (called "Fv-antibody" comprising three CDRs and four frame regions (FRs)) through site-directed mutagenesis. The library was autodisplayed on the outer membrane of Escherichia coli. Target Fv-variants (clones) with specific binding affinity for RNase A were screened using fluorescein-labeled RNase A and flow cytometry. Three Fv variants (clones) were screened, and CDR3 amino acid sequences were analyzed. The screened Fv-antibodies were expressed as soluble proteins, and CDR3 was synthesized into peptides (11 residues). The binding affinity constants (KD) of the expressed Fv-antibodies and synthesized peptides to RNase A were estimated using surface plasmon resonance. Fitting analysis based on the adsorption model showed that KD values of the three expressed Fv-antibodies were estimated to be 17.5 ± 4.1, 28.8 ± 9.7, and 33.9 ± 8.9 nM (n = 3), and those of the three synthesized peptides were 1.3 ± 0.1, 1.3 ± 0.3, and 3.7 ± 1.3 µM (n = 3). From the RNase activity assay with an RNA probe labeled with fluorophore and quencher, inhibition constants (IC50) of the three expressed Fv-antibodies were estimated to be 90.2, 65.3, and 98.8 nM (n = 3), and those of the three synthesized peptides were 8.1, 3.6, and 0.4 µM (n = 3). The activity of RNase inhibitors constituting the expressed Fv-antibodies and synthesized peptides was demonstrated via an RNA cleavage test using the total RNA from HeLa cells.

3.
Biosens Bioelectron ; 237: 115439, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301177

RESUMO

The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.


Assuntos
Técnicas Biossensoriais , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas do Envelope Viral/química , Glicoproteínas de Membrana , Escherichia coli , Anticorpos , Anticorpos Antivirais
4.
Analyst ; 148(6): 1349-1361, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857647

RESUMO

An electrochemical immunoassay based on the redox cycling method was presented using vertically paired electrodes (VPEs), which were fabricated using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as an electrode material and parylene-C as a dielectric layer. For the application to immunoassays, different electrochemical properties of PEDOT:PSS were analyzed for the redox reaction of 3,3',5,5'-tetramethylbenzidine (TMB, the chromogenic substrate for enzyme-immunoassays) at different pH conditions, including the conductivity (σ), electron transfer rate constant (kapp), and double-layer capacitance (Cdl). The influencing factors on the sensitivity of redox cycling based on VPE based on PEDOT:PSS were analyzed for the redox reaction of TMB, such as the electrode gap and number of electrode pairs. Computer simulation was also performed for the redox cycling results based on VPEs, which had limitations in fabrication, such as VPEs with an electrode gap of less than 100 nm and more than five electrode pairs. Finally, the redox cycling based on VPE was applied to the medical diagnosis of human hepatitis-C virus (hHCV) using a commercial ELISA kit. The sensitivity of the redox cycling method for the medical diagnosis of hHCV was compared with conventional assay methods, such as TMB-based chromogenic detection, luminol-based chemiluminescence assay, and a rapid test kit (lateral flow immunoassay).


Assuntos
Simulação por Computador , Humanos , Eletrodos , Oxirredução , Imunoensaio , Técnicas Imunoenzimáticas
5.
Talanta ; 255: 124203, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565526

RESUMO

A one-step immunoassay based on filtration was presented, which used microbeads for target analyte detection and filters with appropriate pore sizes to distinguish the complexity of target analyte and microbeads. For effective bacterial detection, the microbead size and the filter's pore size must be optimized. The optimal concentrations of the enzyme (urease) and antibody were determined at the maximum absorbance change, that is, the maximum pH change. The pH change was measured using a field-effect transistor (FET). The correlation between pH change and threshold voltage was estimated to be 21.7 mV/pH, and the correlation between pH change and the source-drain current was estimated to be -379 nA/pH. For the one-step immunoassay, antibodies against target bacteria were isolated from horse serum by filtration, and these antibodies were estimated to have a sufficiently high specificity to overcome cross-reactivity among five types of food poisoning-related bacteria: Escherichia coli O157, Salmonella typhimurium, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. Finally, the FET-based one-step immunoassay was demonstrated for five types of food poisoning-related bacteria in human serum.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Humanos , Imunoensaio , Salmonella typhimurium , Bactérias , Doenças Transmitidas por Alimentos/diagnóstico , Anticorpos , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise
6.
Analyst ; 147(23): 5363-5371, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281825

RESUMO

A one-step immunoassay was developed for five types of food-poisoning-related bacteria using a switching peptide and antibodies isolated from unimmunized horse serum. The one-step immunoassay involves mixing samples and reagents in a homogeneous solution without any washing steps. In this work, a one-step immunoassay configuration was developed using isolated antibodies labelled with an organic fluorescence quencher and a switching-peptide labelled with a fluorescent dye. The fluorescence-labelled switching-peptide was bound to the antigen-binding site of the isolated antibodies before binding to the bacteria (no fluorescence signal), and the switching-peptide dissociated from the antibodies as soon as they bound to the bacteria (fluorescence signal turns on). By quantifying the generated fluorescence signal, the one-step immunoassay presented here allows microbial detection without any washing step.


Assuntos
Anticorpos , Transferência Ressonante de Energia de Fluorescência , Imunoensaio , Anticorpos/química , Peptídeos/química , Bactérias
7.
Biochip J ; 16(3): 334-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909466

RESUMO

One-step homogeneous immunoassay was developed for detecting influenza viruses A and B (Inf-A and Inf-B) using the switching peptide H2. As the fluorescence-labeled switching peptide dissociated from the binding pocket of detection antibodies, the fluorescence signal could be directly generated by the binding of Inf-A and Inf-B without washing (i.e., one-step immunoassay). For the one-step homogeneous immunoassay with detection antibodies in solution, graphene was labeled with the antibodies as a fluorescence quencher. To test the feasibility of the homogeneous one-step immunoassay, the stability of the antibody complex with the switching peptide was evaluated under different pH and salt conditions. The one-step homogeneous immunoassay with switching peptide was conducted using influenza virus antigens in phosphate-buffered saline and real samples with inactivated Inf-A and Inf-B spiked in serum. Finally, the one-step homogeneous immunoassay results were compared with those of commercially available lateral flow immunoassays.

8.
Anal Chem ; 94(27): 9627-9635, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762898

RESUMO

In this study, a homogeneous one-step immunoassay based on switching peptides is presented for the detection of influenza viruses A and B (Inf-A and Inf-B, respectively). The one-step immunoassay represents an immunoassay method that does not involve any washing steps, only treatment of the sample. In this method, fluorescence-labeled switching peptides quantitatively dissociate from the antigen-binding site of immunoglobulin G (IgG). In particular, the one-step immunoassay based on soluble detection antibodies with switching peptides is called a homogeneous one-step immunoassay. The immunoassay developed uses switching peptides labeled with two types of fluorescence dyes (FAM and TAMRA) and detection antibodies labeled with two types of fluorescence quenchers (TQ2 for FAM and TQ3 for TAMRA). The optimal switching peptides for the detection of Inf-A and Inf-B have been selected as L1-peptide and H2-peptide. The interactions between the four kinds of switching peptides and IgG have been analyzed using computational docking simulation and SPR biosensor. The location of labeling for the fluorescence quenchers has been determined based on the distance between the fluorescence dyes of the switching peptides and the fluorescence quenchers, calculated on the basis of the efficiency of fluorescence quenching, using the Förster equation. To demonstrate the feasibility of the one-step immunoassay, binding constants (KD) have been calculated for detection antibodies against Inf-A and Inf-B with target antigens (Inf-A and Inf-B) and switching peptides (L1- and H2-peptides), using an isotherm model. The immunoassay has been demonstrated to be feasible using antigens as well as real samples of Inf-A and Inf-B with a critical cycle number (Ct). The immunoassay has also been compared to other commercially available rapid test kits for Inf-A and Inf-B and found to be far more sensitive for detection of Inf-A and Inf-B over the entire detection range.


Assuntos
Orthomyxoviridae , Antígenos , Corantes Fluorescentes/química , Imunoensaio/métodos , Imunoglobulina G , Peptídeos/química
9.
Bioconjug Chem ; 33(6): 1166-1178, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35587267

RESUMO

Inhibitors for monoamine oxidase-B (MAO-B) were screened from an FV library with a randomized complementarity-determining region 3 (CDR3) region using a monoclonal antibody against dopamine. As the first step, the FV library was expressed on the outer membrane of E. coli by site-directed mutagenesis of the randomized CDR3 region. Among the FV library, variants with a binding affinity to monoclonal antibodies against dopamine were screened and cloned. From the comparison of the binding activity of the screened clones to a control clone with a modified FV antibody (only with CDR1 and CDR2), the CDR3 regions of screened clones were determined to directly interact with the monoclonal antibody against dopamine. These CDR3 sequences were then synthesized as mimotopes (mimicking peptides) of dopamine. The inhibitory activity of two mimotopes against MAO-B was analyzed using HeLa cells overexpressing MAO-B, as well as using activated human astrocytes; their inhibitory activity was compared to that of a commercial inhibitor of MAO-B, selegiline. The inhibition efficiency of the two mimotopes (in comparison with selegiline) was estimated to be 67.2% and 69.4% in the HeLa cells and 64.4% and 58.0% in the human astrocytes. The gene expression pattern in astrocytes after treatment with the two mimotopes was also analyzed and compared with that in the human astrocytes treated with selegiline. Finally, the interaction between two mimotopes and MAO-B was analyzed using docking simulation, and the candidate regions of MAO-B for the interaction with each mimotope were explored through the docking simulation.


Assuntos
Monoaminoxidase , Selegilina , Anticorpos Monoclonais , Dopamina/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Peptídeos , Selegilina/farmacologia
10.
ACS Sens ; 7(1): 215-224, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984905

RESUMO

Switching peptides were designed to bind reversibly to the binding pocket of antibodies (IgG) by interacting with frame regions (FRs). These peptides can be quantitatively released when antigens bind to IgG. As FRs have conserved amino acid sequences, switching peptides can be used as antibodies for different antigens and different source animals. In this study, an electrochemical one-step immunoassay was conducted using switching peptides labeled with ferrocene for the quantitative measurement of analytes. For the effective amperometry of the switching peptides labeled with ferrocene, a pyrolyzed carbon electrode was prepared by pyrolysis of the parylene-C film. The feasibility of the pyrolyzed carbon electrode for the electrochemical one-step immunoassay was determined by analyzing its electrochemical properties, such as its low double-layer capacitance (Cdl), high electron transfer rate (kapp), and wide electrochemical window. In addition, the factors influencing the amperometry of switching peptides labeled with ferrocene were analyzed according to the hydrodynamic radius, the number of intrahydrogen bonds, dipole moments, and diffusion coefficients. Finally, the applicability of the electrochemical one-step immunoassay for the medical diagnosis of the human hepatitis B surface antigen (hHBsAg) was assessed.


Assuntos
Carbono , Peptídeos , Animais , Carbono/química , Eletrodos , Imunoensaio , Imunoglobulina G
11.
Biosens Bioelectron ; 202: 113975, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042131

RESUMO

Vertically paired electrodes (VPEs) with multiple electrode pairs were developed for the enhancement of capacitive measurements by optimizing the electrode gap and number of electrode pairs. The electrode was fabricated using a conductive polymer layer of PEDOT:PSS instead of Ag and Pt metal electrodes to increase the VPE fabrication yield because the PEDOT:PSS layer could be effectively etched using a reactive dry etching process. In this study, sensitivity enhancement was realized by decreasing the electrode gap and increasing the number of VPE electrode pairs. Such an increase in sensitivity according to the electrode gap and the number of electrode pairs was estimated using a model analyte for an immunoassay. Additionally, a computer simulation was performed using VPEs with different electrode gaps and numbers of VPE electrode pairs. Finally, VPEs with multiple electrode pairs were applied for SARS-CoV-2 nucleoprotein (NP) detection. The capacitive biosensor based on the VPE with immobilized anti-SARS-CoV-2 NP was applied for the specific detection of SARS-CoV-2 in viral cultures. Using viral cultures of SARS-CoV-2, SARS-CoV, MERS-CoV, and CoV-strain 229E, the limit of detection (LOD) was estimated to satisfy the cutoff value (dilution factor of 1/800) for the medical diagnosis of COVID-19, and the assay results from the capacitive biosensor were compared with commercial rapid kit based on a lateral flow immunoassay.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , Simulação por Computador , Eletrodos , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade
12.
Biosens Bioelectron ; 202: 113976, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042130

RESUMO

One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais , Animais , Arachis , Escherichia coli/genética , Alimentos , Imunoensaio , Biblioteca de Peptídeos , Perciformes , Suínos
13.
Bioconjug Chem ; 32(10): 2213-2223, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617729

RESUMO

In this study, the binding domains for fluorescent dyes were presented that could be used as synthetic peptides or fusion proteins. Fv-antibodies against two fluorescent dyes (fluorescein and rhodamine B) were screened from the Fv-antibody library, which was prepared on the outer membrane of Escherichia coli using the autodisplay technology. Two clones with binding activities to each fluorescent dye were screened separately from the library using flow cytometry. The binding activity of the screened Fv-antibodies on the outer membrane was analyzed using fluorescent imaging with the corresponding fluorescent dyes. The CDR3 regions of the screened Fv-antibodies (11 amino acid residues) were synthesized into peptides, and each peptide was analyzed for its binding activity to each fluorescent dye using fluorescence resonance energy transfer (FRET) experiments. These CDR3 regions were demonstrated to have a binding activity to each fluorescent dye when the regions were co-expressed as a fusion protein with Z-domain.


Assuntos
Fluoresceína , Rodaminas , Escherichia coli , Citometria de Fluxo , Biblioteca Gênica
14.
Biochip J ; 15(4): 396-405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466204

RESUMO

Several endemic corona viruses (eCoVs) have been reported to be the most common etiologic agents for the seasonal common cold and also cause pneumonia. These eCoVs share extensive sequence homology with SARS-CoV-2, and immune responses to eCoVs can cross-react with SARS-CoV-2 antigens. Based on such cross-reactivity of antigens among eCoVs, the IgG antibodies against the spike protein (SP) of severe acute respiratory syndrome coronavirus (SARS-CoV) were isolated from pig serum using magnetic beads immobilized with SARS-CoV SP and a protein-A column. The selectivity of the isolated antibodies was tested using different types of antigens, such as SARS-CoV-2 nucleoprotein (NP), influenza A virus (Beijing type), influenza B virus (Tokio and Florida types), human hepatitis B virus surface antigen (HBsAg), and bovine serum albumin (BSA). From the selectivity test, the anti-SP antibodies isolated from pig serum had sufficient selectivity to other kinds of viral antigens, and the apparent binding constant of the isolated antibodies was approximately 1.5 × 10-8 M from the surface plasmon resonance (SPR) measurements. Finally, the isolated anti-SP antibodies were applied to the immunoassay of SP using competitive immunoassay configuration. The feasibility of the detection as well as the quantitative analysis of the SARS-CoV viral culture fluid was determined using four viral culture samples, namely, SARS-CoV, SARS-CoV-2, MERS-CoV, and CoV-229E.

15.
Anal Chim Acta ; 1169: 338627, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34088371

RESUMO

This study aimed to isolate FV-antibodies with biotin-binding activity from a FV-antibody library that was successfully screened on the outer membrane of E. coli. The aims were achieved by (1) preparing a library of FV-antibodies on the outer membrane of E. coli using autodisplay technology, (2) screening the FV-antibodies with biotin-binding activity from the FV-antibody library, and (3) synthesizing peptides (molecular weight of several kDa) from the biotin-binding amino acid sequence of FV-antibodies. An FV-antibody library with a diversity of 1.7 × 105 clones was prepared on the outer membrane of E. coli, using a surface display method called autodisplay technology. For the screening of biotin-binding FV-antibodies, the fluorescence-labeled biotin was introduced into the library, and the target E. coli with biotin-binding activity were screened using flow cytometry. For the screened E. coli clones, the binding affinity (KD) of Fv-antibodies against biotin was calculated and the binding properties of the screened FV-antibody were analyzed through competition assay with a synthetic peptide having the biotin-like activity. From the FRET experiment with the synthetic peptide corresponding to the CDR3 region of the screened Fv-antibody, the biotin-binding activity of the screened FV-antibody was proved to be originated from the CDR3. Finally, the applicability of the biotin-binding domain was demonstrated through the co-expression with a protein called Z-domain with antibody binding activity.


Assuntos
Biotina , Escherichia coli , Anticorpos de Cadeia Única/biossíntese , Sequência de Aminoácidos , Biotina/metabolismo , Escherichia coli/genética , Biblioteca Gênica , Biblioteca de Peptídeos
16.
ACS Appl Mater Interfaces ; 13(25): 29392-29405, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137577

RESUMO

Chemiluminescence immunoassays have been widely employed for diagnosing various diseases. However, because of the extremely low intensity chemiluminescence signals, highly sensitive transducers, such as photomultiplier tubes and image sensors with cooling devices, are required to overcome this drawback. In this study, a hypersensitive photosensor was developed based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) with sufficient high sensitivity for chemiluminescence immunoassays. First, CsPbBr3 QDs with a highly uniform size, that is, 5 nm, were synthesized under thermodynamic control to achieve a high size confinement effect. For the fabrication of the photosensor, MoS2 nanoflakes were used as an electron transfer layer and heat-treated at an optimum temperature. Additionally, a parylene-C film was used as a passivation layer to improve the physical stability and sensitivity of the photosensor. In particular, the trap states on the CsPbBr3 QDs were reduced by the passivation layer, and the sensitivity was increased. Finally, a photosensor based on CsPbBr3 QDs was employed in chemiluminescence immunoassays for the detection of human hepatitis B surface antigen, human immunodeficiency virus antibody, and alpha-fetoprotein (AFP, a cancer biomarker). When compared with the conventionally used equipment, the photosensor was determined to be feasible for application in chemiluminescence immunoassays.


Assuntos
Compostos de Cálcio/química , Imunoensaio/métodos , Chumbo/química , Medições Luminescentes/métodos , Óxidos/química , Pontos Quânticos/química , Titânio/química , Césio/química , Anticorpos Anti-HIV/análise , Antígenos de Superfície da Hepatite B/análise , Humanos , Polímeros/química , Xilenos/química
17.
Enzyme Microb Technol ; 144: 109721, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33541568

RESUMO

In this work, we present a novel microbial biosensor for Salmonella based on impedance spectrometry by using isolated antibodies against a specific bacterial strain from human serum. Anti-Salmonella (or BL21(DE3)) antibodies were isolated from human serum using S. enteritidis (or BL21(DE3)) and the mutant strain ClearColi. After the purification steps, the purification yield of the antibodies was calculated to be 0.2 %. From the FACS analysis, the isolated anti-Salmonella antibodies were estimated to have more than 6-fold higher binding affinity for S. enteritidis compared to antibodies against other kinds of Gram-negative bacterial strains, including HB101, ClearColi, JM110, DH5α, and BL21(DE3). Finally, the anti-Salmonella antibodies isolated herein were used for bacterial detection using electrochemical biosensors based on impedance spectrometry and the Rct value of the antibodies was estimated for S. enteritidis from the Nyquist plot. The limit of detection of the isolated anti-Salmonella antibodies was estimated to be 1.0 × 103 cells/mL for S. enteritidis and 1.0 × 106 cells/mL for BL21(DE3), respectively.


Assuntos
Anticorpos Antibacterianos , Técnicas Biossensoriais , Humanos , Salmonella enteritidis
18.
Biochip J ; 15(1): 100-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613853

RESUMO

Anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) nucleoprotein (NP) antibodies were isolated from pig sera using human SARS-CoV-2 NP-immobilized magnetic beads. The binding properties of the isolated antibodies against SARS-CoV-2 NP were tested via flow cytometry using SARS-CoV-2 NP-immobilized magnetic beads. A competitive immunoassay was developed for detecting SARS-CoV-2 NP as well as SARS-CoV-2 in the culture fluid using magnetic beads with immobilized anti-SARS-CoV-2 NP antibodies. Selectivity tests were carried out during the competitive immunoassay for SARS-CoV, MERS-CoV, and CoV strain 229E in the culture fluid.

19.
Biosens Bioelectron ; 178: 112996, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524706

RESUMO

Herein, we present switching-peptides for a one-step immunoassay, without the need for additional antibody treatment or washing steps to detect antigen-antibody interactions. Fluorescently labeled switching-peptides were dissociated from the immobilized antibody soon after the antigens were bound to the binding pockets. In this study, four different parts of the antibody (IgG) frame regions were chemically synthesized, and these peptides were bound to immobilized antibodies as switching-peptides. We presented the design principle of switching-peptides and used Pymol software, based on the changes in thermodynamic parameters, to study the interaction between antibodies and switching-peptides. The binding properties of switching-peptides were analyzed based on Förster resonance energy transfer between switching-peptides as well as between switching-peptides and antibodies (IgGs) isolated from different animals. The binding constants of the four switching-peptides to antibodies were estimated to be in the range of 1.48-3.29 µM. Finally, the feasibility of using switching-peptides for the quantitative one-step immunoassay was demonstrated by human hepatitis B surface antigen (hHBsAg) detection and statistical comparison of the assay results with those of conventional ELISA. The limit of detection for HBsAg was determined to be 56 ng/mL, and the dynamic range was estimated to be 136 ng/mL-33 µg/mL. These results demonstrate the feasibility of the one-step immunoassay for HBsAg.


Assuntos
Técnicas Biossensoriais , Hepatite B , Imunoensaio , Peptídeos , Animais , Hepatite B/diagnóstico , Antígenos de Superfície da Hepatite B , Humanos , Peptídeos/análise
20.
ACS Appl Bio Mater ; 4(11): 7779-7789, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006761

RESUMO

As the shelf life of platelets collected from donated blood is very short, approximately 5 days, the determination of bacterial contamination in platelets has become necessary. In this study, rapid analysis of Gram-positive and Gram-negative bacterial contamination in platelet samples was presented without pre-enrichment using pig serum-derived antibodies against the outer membrane proteins (OMP) of Gram-negative bacteria and antibodies against lipoteichoic acid (LTA) on the surface of Gram-positive bacteria. The anti-OMP antibodies against Gram-negative bacteria were isolated using sequential incubation with (1) the modified Gram-negative bacteria ClearColi, which lacks lipopolysaccharide (LPS) on the outer membrane, and (2) the Gram-positive bacteriaBacillus subtilis to filter away nonspecifically bound proteins from ClearColi. The anti-lipoteichoic acid (LTA) antibodies against Gram-positive bacteria were isolated using sequential incubation with (1) the Gram-positive bacteriaB. subtilis and (2) the Gram-negative bacteria Escherichia coli BL21 to filter away nonspecifically bound proteins fromB. subtilis. The feasibility of using the antibodies isolated from pig serum against Gram-negative and Gram-positive bacteria was demonstrated using flow cytometry. Finally, detection of the contamination of platelets with Gram-negative and Gram-positive bacteria using the impedance immunosensor based on these isolated antibodies was successfully demonstrated.


Assuntos
Técnicas Biossensoriais , Animais , Anticorpos/metabolismo , Plaquetas , Escherichia coli , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Imunoensaio , Proteínas de Membrana/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...